Crystal Structure of Trichlorobis(tri-n-butylphosphine)trimethylphosphiterhodium(III)

By F. H. Allen,* GODFREY CHANG,[†] K. K. CHEUNG, T. F. LAI, and L. M. LEE (The Chemistry Department, University of Hong Kong)

and A. Pidcock

(The Chemistry Department, University of Sussex)

Summary The X-ray crystal structure of $[RhCl_3(Bun_3P)_2-({MeO}_3P)]$ confirms the structure deduced from ³¹P n.m.r.

WE believe that it is possible from ³¹P n.m.r. data alone to assign the correct structure to any isomeric form of a compound of the type [RhX₃L₂L'], where L is a tertiary phosphine, L' a tertiary phosphite and X an anion. This prediction is verified by X-ray analysis of one compound The first-order ³¹P n.m.r. spectra of these compounds, neglecting P-H coupling, is: (I), 24 lines; (II), 10 lines;

[†] Present address: The Chemistry Department, The University of Waterloo, Ontario.

The ³¹P spectrum of A consists of two low-field triplets (a)[‡] and two-high field doublets (b).

			(a)		(b)
δ (from P ₄ O ₆) p.p.m.		••	19.6]	106.0
J_{Rh-P} Hz	•	••	185		80.2
$J_{\mathbf{P}-\mathbf{P}}$ Hz	•	••	unresolved		29.1
The ratio of	t the	areas	s (a):(b) is	1:2.	

It is known that for the complexes of the type [PtX₂- $(Bu^{n}_{3}P)_{2}$] and $[PtX_{4}(Bu^{n}_{3}P)_{2}]$, the coupling constant J_{Pt-P} in the *cis*-isomer is about 1.5 times larger than in the corresponding trans-isomer.³ We find that for a series of compounds mer-[RhX₃(R₃P)₃]^{1,4} the ratio between J_{Rh-P} X-ray data below. Using similar arguments the structure of B would also be (II). [J(Rh-phosphite) = 202.8 Hz,J(Rh-phosphine) = 79.3 Hz].

Crystals of A are monoclinic, space-group $P2_1/n$; a =18.45, b = 18.73, c = 11.18 Å, $\beta = 100.70^{\circ}$, $D_{\rm m} = 1.29$ g cm⁻³, Z = 4 (flotation), $D_c = 1.287 \text{ g cm}^{-3}$.

Intensity data were estimated visually from equiinclination Weissenberg photographs (Cu- K_{α}) of layers h0-13l and hk0-5. The structure was solved by the heavy-atom technique and refined by full-matrix leastsquares, including anisotropic temperature factors for the rhodium, phosphorus, and chlorine atoms. The final Rindex for 3775 observed reflections is 0.124. A stereoscopic view of the molecule is shown in Figure 1. Rh-Cl

FIGURE 1. Stereoscopic view of the molecule

for phosphorus trans to X compared with phosphorus trans to phosphorus is about 1.34. It has also been noted^{3,5} that J(phosphite)/J(phosphine) is nearly independent of the acceptor, being 1.62 for cis-[PtCl2(phosphite)2]/cis-[PtCl2-(phosphine), and 1.53 for [phosphite-BH3]/[phosphine-BH3].

The coupling constants in mer-[RhCl₃(Bun₃P)₃] are: J_{Rh-P} (P trans to P) 82.6 Hz and J_{Rh-P} (P trans to Cl) 113·2 Hz.§

If the relationship between J(phosphite)/J(phosphine)holds for rhodium complexes then for phosphite trans to chlorine J_{Rh-P} will be, ca. $1.6 \times 113 = 181$ Hz and for phosphite trans to phosphine, ca. $1.6 \times 83 = 133$ Hz. The low-field lines in the spectrum of A arise from the trimethyl phosphite phosphorus since not only do phosphite resonances generally appear to the low field of phosphine but the ratio of the areas (a): (b) is 1:2. The measured value of J_{Bh-P} = 185 Hz indicates that trimethyl phosphite is trans to chlorine.

The high-field lines (b) give a value of $J_{Rh-P} = 80 \text{ Hz}$ and this is approximately the same as the value found for $J_{\rm Rh-P}$ (phosphorus *trans* to phosphorus) in the series of compounds mer-[RhX₃(R₃P)₃].^{1,4}

Hence the n.m.r. evidence alone strongly indicates structure (II) and this assignment is confirmed by the

- The low-field triplets are unresolved in compound A.
- § Remeasured.
- ¹ F. H. Allen and A. Pidcock, unpublished results.
- ² J. Nixon and A. Pidcock, An. Rev. NMR, 1968, vol. 2.
- ³ A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707.
- ⁴ S. O. Grim and R. A. Ference, Inorg. Nuclear Chem. Letters, 1966, 2, 205.
 ⁵ J. G. Verkade, R. W. King, and C. W. Heitseh, Inorg. Chem., 1964, 3, 884.
- ⁶D. J. Duchamp, Amer. Cryst. Assoc. Meeting, Bozeman, Montana, 1964, paper B-14, p. 29.

and Rh-P distances are shown in Figure 2. All calculations were carried out at the California Institute of Technology on an IBM 7094 computer under the CRYRM system.⁶

FIGURE 2. Bond lengths in Å (e.s.d. 0.005 Å)

(Received, April 27th, 1970; Com. 624.)